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Abstract—Chaotic systems exhibit highly nonlinear, complex
and unpredictable behaviors. Thereby, these systems have re-
ceived much attention in a variety of fields over the past few
decades. In this paper we develop a particle filter algorithm to
solve the problem of chaotic state and unknown input estimation
from arbitrarily nonlinear time series. Thus, even if there exist
Gaussian or non-Gaussian noise in chaotic maps, not only the
chaotic states can be estimated by the proposed particle filter
but also the unknown inputs.

A computer simulation is conducted on the famous Holmes map
to demonstrate the effectiveness and the high performances of
the proposed estimation approach.

I. INTRODUCTION

In the past decades chaos has been an interesting topic in
the field of nonlinear science [1], [2]. Chaos theory studies
the behavior of dynamical systems that are highly sensitive to
initial conditions which is popularly referred to as the butterfly
effect [3], [4]. Small differences in initial conditions (such
as those due to rounding errors in numerical computation)
yield widely diverging outcomes for such dynamical systems,
rendering estimation more difficult [5], [6].

Among many studies on chaos, one important topic is to
estimate chaotic states from the time series deriving from
chaotic maps [7], [8]. Many works considered the estimation
of chaotic states with the assumptions that chaotic maps and
their time series are only affected by white noise, in particular
Gaussian noise, the time series is linear on chaotic states, and
there exist no unknown inputs in chaotic maps.

Note that estimating unknown inputs is motivated by certain
applications such as fault detection, fault diagnostic, control
system design and synchronization and decryption in chaotic
communication systems. Filter design for estimating the state
of a system and the unknown inputs in the linear case has
received considerable attention in the past. However, little
research has been paid toward nonlinear case [9].

Additionally, most of the existing results for nonlinear
systems concerns only the estimation of the system state
subject to unknown inputs, see Chen and Saif [10], Pertew
et al. [11] for instance. Very few works have been carried
out on estimating the unknown inputs. We cite here some of
the available results in input recovery context. In Huijberts et
al. [12], the problem of unknown, constant or slowly time-
varying input estimation using an Extended Kalman Filter
(EKF) is discussed. In Boutayeb et al. [13], the authors
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proposed an approach to estimate simultaneously the state of
the system and the unknown inputs using a generalized state
space observer. This approach is extended recently to a more
general class of nonlinear systems in Trinh et al. [14], and to
discrete time case using the EKF in Boutayeb [15].

In certain applications, such as chaos communication, the
quality of the input reconstruction plays a very important
role. Indeed, in chaos communication systems, the transmitted
signal through a transmission channel is often corrupted by
noise. Therefore, proposing a new estimation unknown input
method that take into account the noises affecting the systems
is necessary.

In this paper, the particle filtering technique is proposed
to solve the problem of state and the input estimation of
chaotic systems in the presence of Gaussian or non-Gaussian
noise. Indeed, the first particle filter algorithm was proposed by
Gordon [16]. After that, a number of particle filter algorithms
have been proposed such as auxiliary sampling importance
resampling particle filter [17] and regularized particle filter
[18], [19]. Following Bayesian filtering framework, particle
filters use sequential Monte Carlo methods to approximate
the optimal filtering by representing the probability density
function with a swarm of particles [20].

On the other hand, particle filter algorithms consist of
two main steps, namely prediction and update which enable
particle filters to perform online estimation recursively. More-
over, particle filters have been successfully applied to many
scientific and engineering fields such as tracking problems
[21], speech enhancement [22], [23], fault detection [24], [25],
recovering the hidden messages in the field of chaotic secure
communication [26], [27].

The main contribution of this paper lies in the extension
of particle filter to unknown input reconstruction using an
approximate Bayesian classifier and its application to the
estimation of chaotic systems. Thus, the proposed particle
filter estimates not only the chaotic state but also reconstructs
the unknown input from arbitrarily nonlinear time series even
if exist Gaussian or non-Gaussian noise in chaotic maps. In
this situation, both the efficiency and the robustness of the
proposed algorithm can be improved.

The organization of this paper is as follows. In Section II,
some preliminaries of this paper are reviewed. In Section III,
an estimation method based on particle filters is proposed for
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the chaotic state estimation and unknown input reconstruction
despite the presence of either Gaussian or non-Gaussian noise.
In Section IV, numerical simulations on the Holmes process
are given to demonstrate the effectiveness of the proposed
estimation approach. Finally, some concluding remarks are
provided in Section V.

II. PRELIMINARY FUNDAMENTALS AND PROBLEM
FORMULATION

A. Overview of particle filters

The particle filter is also referred to as sequential Monte
Carlo approach in the Bayesian framework. It does not
estimate the state information explicitly but with a posterior
probability. This technique can achieve theoretically optimal
solution for nonlinear/non-Gaussian models.

Let us consider a dynamic system represented by :

{xk+1 = flzr) + 1%
ye = h(zk) + ok

where x;, € R" is the state vector and y, € R™ is the
output vector. f(.) and h(.) are the system and measurement
equation, respectively, and rj and v are the system and
measurement noises, respectively.

D

In order to represent the posterior probability p(zy/Y%:), we
define the particle set at time k as follows:

Py = {(z}, wp)\i=1,..,N} )

where zi, € R" denotes the ith particle of P and wj, is the
associated importance weight.

By using the set of particles, we approximate the posterior
probability p(zy/Yy) as :

N
plae/Ye) = > wid(zx — ) 3)
i=1
where Y, = {y1,v2,...,yx} is the set of accumulated
measurements up to time k.

In order to estimate the state, the particle filter performs
three steps at each time which are sampling, importance
weighting and resampling.

Indeed, in the sampling step, samples are generated
according to a proposal distribution g(x} /% ,vyx). The
choice of the proposal density is one of the most critical
issues in the particle filter and two popular choices are the
posterior function q(z% /2% |, yx) = p(zt /2t |, yx) and the
prior function g(z% /% |, yx) = p(xi /z% ;) [19].

In the importance weighting process, the importance

weights are updated such the set of weighted particles
approximate the unknown target distribution.
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At the resampling step, the particles are resampled
according to their weights and are replaced with new particles
with equal weights given by 1/N [28], [29].

Remark 1: It is noteworthy that the particles with larger
weights are always more likely to be selected than the
particles with smaller weights in order to obtain good
estimation performances.

B. Problem formulation

Consider chaotic maps with unknown input given as fol-

lows:

Tr+1 =

Ye =
where z;, € R" is the state vector, y; € RP is the output
vector, f(xzy) stands for the nonlinear function and the
function h(zy), considered in the time series yg, has an
arbitrarily nonlinear form. r, € R" and v, € RP represent
the system noise and the measurement noise, respectively.

The constant vector d € R™ is regarded as the unknown input
to be estimated.

flzk) +d+ g

h(zg) + vg @)

Remark 2: Notice that the unknown input d does not
change the chaos nature. Furthermore, the system noise 7y
and the measurement noise v; could be either Gaussian or
non-Gaussian noise.

Our problem undertaken in this paper is to estimate the
chaotic states and to reconstruct the unknown input from the
nonlinear output time series despite the presence of either
Gaussian or non-Gaussian noise applied to the chaotic system.
Hence, in the subsequent sections, the particle filter algorithm
design is proposed to resolve the above problem.

III. PARTICLE FILTER ALGORITHM WITH UNKNOWN INPUT
RECONSTRUCTION

In this section, we first introduce the unknown input re-
construction with an approximate Bayesian classifier. Then,
we present the proposed particle filter algorithm in order to
estimate simultaneously the chaotic state variables and the
unknown inputs.

A. Unknown input reconstruction with a Bayesian classifier

We note that the constant vector d must take a value
belongs to the set S = {61,605, ...,05} where the parameters
01,05, ...,0), are different vectors which do not change the
chaos nature of the studied process.

The probability of each element of the set S, denoted by
P(dy=0,) for | = 1,2..., M, is assumed to be known as
prior knowledge.
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On receiving the measurement yy, 11, according to Bayesian
formula [30], we have :

dp,=0;)P(d, =20
P (dr = 01/yrs1) = A];(ykﬂ/ 5 ) P (d )
> j=1P Wr+1/di = 0;) P (dy, = 6;)
&)
for{=1,2..., M.
Then, we approximate the prior probability density

P (Yg+1/dx, = 6;) by Monte Carlo method [16] :

P (Ykt1/dy = 0;) = /pv (Yrs1 — h (Tpg16 + 01)) dggn i

N
1 i
~ Np va (yk+1 —h (%H/k + 91))
i—1

for | = 1,2...,M, where p,(v) is the probability density
function of the measurement noise and N is the number of
particles used in numerical simulation. Hence, the posterior
probability can be approximated by :

P = ) = =00 P (e = )

> j=1 P Wkt1/di = 0;) P (dy, = 0;)
N5 Sl (yk+1 —h (x;c+1/k + 91))P (dx = 61)
- M N ;
NLp D=1 2= Py (yk+1 —h (%H/k + 9j>)P (dp =6;)
N
x va (yk+1 —h
i=1

M.

(6)

(whoryu +0)) Plde=0) @
forl =1,2...,

An approximate Bayesian classifier is formed to estimate
the unknown input dj, at the kth step by :

= Hl)

®)
Finally, the unknown input is defined by the following equal-

ity:
1k,
"k Zi:l i,

B. Proposed particle filter algorithm

di = a3 Z Po (ka h (x; P el))P (di

9

In the subsequent section, we present a proposed particle
filter algorithm to estimate the chaotic state variables and to
reconstruct the unknown inputs applied to nonlinear chaotic
systems. Thus, we introduce a few necessary improvements
on the original particle filter algorithm proposed in [16].

Let Dy={y; : i = 1, ..., k} denotes the available information
of the measurement signal at the kth step. We summarize the
proposed particle filter algorithm in the following algorithm:

o Step 1: Initialization

Sampling N particles {x%pi =1,.., N} from the
supposed conditional probability density function given
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by p(xo/Do);

Step 2: Prediction

Sampling N values {r},i =1, ..,
ity density function of 7.

Then calculate :

N} from the probabil-

Thoy e = flah) + 1, (10)

Therefore, the prior probability function of x; at time
step k is approximated by :

25 (@h1/k = Thpae) (D

i=1

p(rry1/Dr) =

where § is the Dirac-delta function;

Step 3: Estimation

On receiving the measurement signal y1, the approx-
imate Bayesian classifier is formed to estimate the un-
known input dj, at the kth step by :

4 = malrgllg.%x Zp” (ka h (xi“/k * 01))

XP(dk = 0[) (12)

Then calculate :

Frrap = flah) +dy + 7, (13)

Step 4: Update
Calculate the weight w® by :

)

Pk = B )0 (e — Ty ge)

Z;'V:l Po(Yrt1 — h(f';iﬂ/k))(s(ffkﬂ/k -

“%?chl /k)

(14
then the posterior probability density function is approx-
imated as :

N
) = Zwi5<xk+1 - 55}:”1/1@) (15)

i=1

p(xk+1/Dk+1

Step 5: Resampling

Resample independently N times from the above discrete
distribution. Thus, the updated probability density func-
tion becomes :

N
P(Thy1/Diy1) = Z Tpir = Thyy)  (16)

Step 6: Iteration
Let k =k + 1, go to step 2;

Step 7: Result
Calculate the estimated unknown input by the following

equality: . .
_ !
== Zi:l d (17)
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IV. NUMERICAL SIMULATION

In this section, the famous Holmes map is illustrated
to verify the effectiveness of the proposed particle filter
algorithm in the field of chaotic state estimation and unknown
input reconstruction.

The dynamics of Holmes map with unknown input is
described by [31]:

{ Ti1 k1 = T2 g+ Tk (18)

Tok+1 = GX1k + bxg,k— cmg,k-i- d+ T2k

where a = 0.047, b = 2.4 and ¢ = 0.155.

In this example the unknown input d is applied to the
second equation and r = [ry rg,k]T represent the system
noise.

In order to validate the designed particle filter algorithm, the
following two cases are considered where the measurement
signals are nonlinear and the noises r; can be Gaussian or
non-Gaussian.

Case 1: We assume that the system noise 7y is zero-mean
Gaussian white noise with the following covariance matrix:

0.0025 0
R= 0 0.0025

We assume that the unknown input is d = 0.4 and
the initial condition of chaotic map is characterized by
$171(0) = $2,1(0) =0.

On the other hand, the time series is given by
Y = Tik x%k + v where the measurement noise v
is zero mean Gaussian white noise with covariance ) = 0.01.

In this case, the initial states for the proposed particle filter
algorithm are chosen as z1,1(0) = —0.5 and x4 1(0) = 0.5.

The particle filter was run for different number of particles
ranging between 1000 and 3000. The number of efficient
particles used in the resampling procedure was set to
N = 2000. Notice that the number of particles that gives
the optimal trade-off between the estimation error vector and
the run-time of the particle filter can be defined by using
trials mechanism. Moreover, it should be noted that the initial
particles are distributed randomly in the objective to get
optimal solution.

The simulation results are plotted in Figs. 1-3. Thus, Figs.
1 and 2 are the plots of the true and estimated states of
Holmes map (18), while Fig. 3 shows the true and estimated
unknown input, with the following numerical value extracted
from simulation:

1 k
/ A
d_%Ehﬂk—O%%
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From these figures, the proposed particle filter algorithm
can dynamically estimate not only the states of Holmes map
but also the unknown input with good performances.

Case 2: We assume that the system noise 7y, satisfies the
following probability density function :

Drk(T1 ks T2 k) = 2500 100Ukl +lr2.1]) rok € (—00,400)
(19)
Moreover, we consider that the unknown input is d = 0.45
and the initial conditions of the studied chaotic map are given
by I171(0) =0 and 1’271(0) =0.
The time series, related to (18), is given by
Y = |Tok| x2x + vr where the measurement noise vy
is zero-mean Gaussian white noise with covariance value

Q = 0.01.

In this case, the initial states for the proposed particle filter
algorithm are chosen as x; 1(0) = —0.5 and 251(0) = 0.5.

As in case 1, the number of particles is taken in this case
such as N = 2000 and the initial particles are distributed
randomly in order to obtain optimal performances.

The performances of the proposed approach are shown
in Fig. 4-5, in which are simulated the evolution of the
real states and their observed ones of the studied Holmes
nonlinear stochastic system in the presence of non-Gaussian
noise.

It is clear from these curves that the proposed nonlinear
chaotic estimation is efficient. Indeed, it allows the state
variables to reach the real trajectories of the Holmes map
despite the strong disturbances emerging on the studied
system.

On the other hand, Fig. 6 shows the true and estimated
unknown input applied to the second equation of the nonlinear
chaotic system. The approximate bayesian classifier of the
unknown input is computed as:

1 k
’ ’
d-gEiﬂk—Q“”

It can be seen from this curve and from the mean value
of the unknown input vector that the proposed particle filter
permits the reconstruction of the unknown input with good
performances.

From the simulation results, the proposed estimation ap-
proach, in the two cases with Gaussian or non-Gaussian
noise, is reliable since the estimated states track the real
states accurately. Moreover, the improved particle filter made
possible a convincing estimation of the unknown input applied
to the Holmes chaotic process.
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V. CONCLUSION

In this paper, we have developed a particle filter algorithm
for nonlinear chaotic systems by using an approximate
Bayesian classifier.

The proposed approach estimates not only the chaotic
states but also the unknown inputs from arbitrarily nonlinear
time series in the presence of either Gaussian or non-Gaussian
noise.

It has been shown from the simulation results that the pro-
posed estimation scheme based on particle filter is efficient as
it allows good reconstruction of the unavailable state variables
and unknown inputs of the Holmes map chaotic system despite
the perturbation noise applied to the studied process.
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Fig. 4. The true and estimated states on 1 in the case of non-Gaussian noise.
Fig. 5. The true and estimated states on 22 in the case of non-Gaussian noise.
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The true and estimated states on x1.

Fig. 2. The true and estimated states on z2.
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Fig. 6. The true and estimated unknown input in the case of non-Gaussian

noise.
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Fig. 3. The true and estimated unknown input.
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